Wednesday, November 21, 2007

A lot of nontrivial Bocksteins in SO(12)


But there's a problem with the Poincare' duality. What gives, AI?

3 comments:

  1. Yeah, but the Gaussian Bell looks kind of cracked in the middle. Que pasa?

    ReplyDelete
  2. How's my Bell? If you use the Leibniz rule, you should get yours.

    | 1 |
    | a |
    | a2 |
    | a3 b |
    | a4 ab |
    | a5 a2b c |
    | a6 a3b ac b2 |
    | a7 a4b a2c ab2 d |
    | a5b a3c a2b2 ad bc |
    | a6b a4c a3b2 a2d abc b3 |
    | a7b a5c a4b2 a3d a2bc ab3 bd |
    | a6c a5b2 a4d a3bc a2b3 abd b2c |
    | a7c a6b2 a5d a4bc a3b3 a2bd ab2c cd |
    | a7b2 a6d a5bc a4b3 a3bd a2b2c acd b2d |
    | a7d a6bc a5b3 a4bd a3b2c a2cd ab2d b3c |
    | a7bc a6b3 a5bd a4b2c a3cd a2b2d ab3c bcd |
    | a7b3 a6bd a5b2c a4cd a3b2d a2b3c abcd b3d |
    | a7bd a6b2c a5cd a4b2d a3b3c a2bcd ab3d |
    | a7b2c a6cd a5b2d a4b3c a3bcd a2b3d b2cd |
    | a7cd a6b2d a5b3c a4bcd a3b3d ab2cd |
    | a7b2d a6b3c a5bcd a4b3d a2b2cd |
    | a7b3c a6bcd a5b3d a3b2cd b3cd |
    | a7bcd a6b3d a4b2cd ab3cd |
    | a7b3d a5b2cd a2b3cd |
    | a6b2cd a3b3cd |
    | a7b2cd a4b3cd |
    | a5b3cd |
    | a6b3cd |
    | a7b3cd |

    ReplyDelete
  3. AI, that looks like some kind of amped up variation on that Sudoku crap I keep seeing people wasting their time on.

    (No, I'm not implying that what you do is crap, either. I think reading books or crunching numbers and retaining that type of knowledge is perhaps a better use of time than Sudoku.)

    ReplyDelete