Wednesday, November 21, 2007

A lot of nontrivial Bocksteins in SO(12)


But there's a problem with the Poincare' duality. What gives, AI?

3 comments:

Tecumseh said...

Yeah, but the Gaussian Bell looks kind of cracked in the middle. Que pasa?

Tecumseh said...

How's my Bell? If you use the Leibniz rule, you should get yours.

| 1 |
| a |
| a2 |
| a3 b |
| a4 ab |
| a5 a2b c |
| a6 a3b ac b2 |
| a7 a4b a2c ab2 d |
| a5b a3c a2b2 ad bc |
| a6b a4c a3b2 a2d abc b3 |
| a7b a5c a4b2 a3d a2bc ab3 bd |
| a6c a5b2 a4d a3bc a2b3 abd b2c |
| a7c a6b2 a5d a4bc a3b3 a2bd ab2c cd |
| a7b2 a6d a5bc a4b3 a3bd a2b2c acd b2d |
| a7d a6bc a5b3 a4bd a3b2c a2cd ab2d b3c |
| a7bc a6b3 a5bd a4b2c a3cd a2b2d ab3c bcd |
| a7b3 a6bd a5b2c a4cd a3b2d a2b3c abcd b3d |
| a7bd a6b2c a5cd a4b2d a3b3c a2bcd ab3d |
| a7b2c a6cd a5b2d a4b3c a3bcd a2b3d b2cd |
| a7cd a6b2d a5b3c a4bcd a3b3d ab2cd |
| a7b2d a6b3c a5bcd a4b3d a2b2cd |
| a7b3c a6bcd a5b3d a3b2cd b3cd |
| a7bcd a6b3d a4b2cd ab3cd |
| a7b3d a5b2cd a2b3cd |
| a6b2cd a3b3cd |
| a7b2cd a4b3cd |
| a5b3cd |
| a6b3cd |
| a7b3cd |

My Frontier Thesis said...

AI, that looks like some kind of amped up variation on that Sudoku crap I keep seeing people wasting their time on.

(No, I'm not implying that what you do is crap, either. I think reading books or crunching numbers and retaining that type of knowledge is perhaps a better use of time than Sudoku.)